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ABSTRACT

A new approach for fault location in an analog fault dictionary has been adopted
on the basis of quantizing circuit responses. The possibility of quantization is offered
by faults having nearly the same effect on some test measurements. This produces mul-
tivalued logic responses which can be manipulated logically to obtain decision rules for
fault location. A logical isolation algorithm has been introduced to form a dictionary
for hard fault diagnosis using d.c. voltage measurements. The dictionary consists of
tables containing voltage ranges of quantized responses and numerical codes identifying
different faults in the dictionary. The test measurements chosen by the algorithm are

*" free from redundancy and provide the maximum fault isolation capability of all initially
. chosen measurements. The algorithm can be easily implemented with some extra
" software added to the circuit simulator used in fault simulation. Hardware implemen-

tation of a logical isolation ATE is simple and efficient compared to a least squares
based dictionary. The algorithm has been extended to handle multiple test input con-
ditions.
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1. INTRODUCTION
The problem of analog fault diagnosis of electronic circuits has been addressed by

many researchers from different view points [1]. Within the frame of general testing
*: strategy of electronic equipments, we are here concerned with fault location in malfunc-

tioning analog circuit boards. The term "testing strategy" roughly means the pro-
cedure followed in testing different modules in modularly structured equipments. For
example in case of complete failure, the first module to be checked is the power supply
module, which is more likely to be the cause of trouble than any other module, based

* on trouble shooting experience and fault history. Other types of malfunction may be
indicative of the failing module, e.g. if the picture is fading in a monitoring system, the
most likely cause may be the video processing unit. In the worst case of a completely
unknown source of trouble, automatic fault diagnosis may be applied sequentially to all

* modules, in which case a fast enough technique has to be available in order to achieve
the job in a reasonably short time.

This discussion has been meant to give some insight into practical considerations
in trouble shooting which are in direct connection with our approach in this report.
The figure of merit which we have planned to achieve is the speed of diagnosis without
degrading its reliability, with the purpose of handling a large number of circuits in a
short time.

Looking at the different fault diagnosis approaches available in literature [2] we
• can note two main categories in which every method can approximately be included.
* These are the "simulation after test" and "simulation before test" approaches. Simula-

tion after test, sometimes called component simulation [31, is intended to solve for com-
ponent values from knowledge of some network functions (voltages, currents or
impedances) measured at accessible network terminals. This is done by solving the net-
work equations in frequency or time domain as derived by KCL, KVL and component
characteristics. This implies that all simulations have to be done after actual testing.
Adding to this the complexity of the equations to be solved, it turns out that powerful
computing facility and long computing time are needed which does not serve the pur-
pose of our work. Naturally we have adopted the other approach in order to minimize
the computations needed after testing or completely eliminate them if possible.

This, often called fault dictionary approach, is in its essence an automatic means
tl for replacing human logic in troubleshooting which depends on counting all or most

possibilities of likely faults until the true fault is located. This requires solving the net-
work equations under all fault cases, which may be caused by single or multiple com-
ponent failure, and storing the computed response or any network function which will
be taken as a criterion to be compared against measured values after testing. The cri-
teria employed could be voltage, current, etc. The problem that obviously faces this

1
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technique is the multitude of faults which must be considered in simulation. However,
it has been reported [4] that catastrophic faults (open and short-circuits), also called
hard faults, constitute more than 80 percent of encountered faults, which suggests that

*simulating only these faults, one can locate a good percentage of faults using only an
efficient fault dictionary. This saves the effort needed in component simulation every

* •time a diagnosis is needed. With only open and short circuit faults considered, it turns
out that only d.c. analysis of the network is needed, which makes fault simulation even

- simpler.

* •Organization of the report:

The next section explains the general procedure for fault dictionary set up and
presents a least squares based algorithm for fault isolation in the dictionary. Section 3
presents a new algorithm for fault isolation based on quantizing circuit responses. The

:. possibility of quantization is offered by faults having nearly the same effect on some

test measurements. The algorithm is built around the digital representation of the
responses and is implemented by logical manipulation of the quantized responses. In

section 4, the logical binary equivalent form of the algorithm is discussed. This offers a
solution to the problem of minimizing the number of test measurements. Important
issues in the cost of implementing the algorithm and building a logical isolation-based

*ATE are discussed in the context of binary representation of the algorithm. In section
5, the algorithm is extended to handle multiple test input conditions. The use of

* different test inputs is subject to the insufficiency of test measurements under normal
operating input conditions. Section 6 contains conclusions and suggestions for further
research.

2. AN OVERVIEW ON THE ANALOG FAULT DICTIONARY

* 2.1 Generation of the AL&Jog Fault Dictionary
The generation of analog fault dictionaries is in fact an iterative process with two

* degrees of freedom which represent the possibilities of varying the input excitation and
selecting the responses to be measured as shown in Fig. 2.1. The selection of the fault

* .list is essentially associated with the original design of the unit under test (UUT). How-
ever, an experienced person can replace the designer in selecting the faults which are

9 likely to happen. The selection of the measurable responses is influenced by the
I. required level of isolation and the economy of the testing procedure insofar as the

number of measurements is concerned. The input stimuli considered here are d.c. vol-
tage or current sources which may be different from the nominal operating sources and
applied at judiciously selected points in the network. The reason behind using any

* additional input stimulus is the possible insufficiency of the selected measurable
responses to achieve the required level of isolation. Applying the additional input, it is
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Figure 2.1 Flow chart of the general procedure for
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hoped that some of the faults, which have not. been isolated with nominal sources, will
be propagated to some of the accessible terminals at which responses are measured.

Once the required faults are satisfactorily isolated, the software and data of the
automatic test equipment (ATE) have to be prepared. In its basic form, the ATE data
is the computed response values which have been found enough for isolation. Other
necessary software support depends on how faults will be located in the dictionary after
testing, or in other words the decision rule employed in fault location. The capabilities
of the circuit simulator are determined by the requirements of the type of analysis to be
used. Some circuit analysis programs may not allow direct simulation of open and
short circuits without changing the program input in which case, a method for simulat-

ing them has to be tailored to suit the program and the method of analysis. The
repeated solution of the network under all fault conditions may be time consuming.
For this reason, specially designed methods for hard fault simulation have been sug-
gested [5], [6] which do not require solving the original network every time a fault is
simulated. In all the discussions to come we will assume that the responses to be used
in isolation have been computed already, regardless of the method used in computing
them. More specifically, we will focus on d.c. node voltages because of their easy meas-

* •urement.
At this point it is important to make clear the difference between two problems

which are defined below.

1. Fault isolation:
This means finding a set of tests or measurements that enable us to recognize all

faults if any one of them happens. Before dealing with the problem, it may be instruc-
tive to note some of the inherent features of analog respoDses which govern any fault
isolation study:

1. Unlike digital functions, analog voltages span a continuous range of values where it

* - may seem that the exact value of the voltage is the quantity of interest. However,
the evident variability of any response as a result of the components' statistical
variation makes it necessary to talk about ranges of voltages instead of their exact
values.

2. The network topology imposes some restrictions on the sensitivity of responses
4 measured at accessible terminals to some of the faults, at least under normal

operating conditions. In other words, not every fault will affect every terminal.
This will result in having groups of faults having almost the same effect on some
node voltages. We reft -eA to t' earlier as the insufficiency of some terminal
measurements to reveal th- ,tuai fault. Rather we will have ambiguous cases and
ambiguity sets of faults which have to be further analyzed and broken down to
their elementary constituents using different measurements. This process is known

I



in reliability studies as a fault tree [7].

2. Fault Location:
By fault location, we mean the procedure to be followed after testing to locate the

actual fault among all faults in the dictionary. The problem may be better viewed in
the space of measurements. Suppose that (V,V2...v E V .R n is the set of measurements
necessary for location of any fault in the set {ff2... fm}. The result of simulation is m
points in RI representing the m faults. Given the actual measurement represented by
a point in i"n it is required to find a point of the m simulations which is nearest to the
actual measurement. The difficulty of the problem arises from the fact that the actual
measurement will never coincide with any of the simulations because of the statistical
variation of the components in the network and consequently of the node voltages.

This problem is obviously a pattern classification problem where every class is only a
single point in IRn and the pattern to be classified is also a single point. This is called
"the nearest neighbor" problem. The nature of the problem as presented here may not
always be explicitly stated in literature dealing with fault dictionary, however we view
the decision rule for fault location in a dictionary as a pattern classifier which is obvi-
ous in a linguistic sense. Classification or finding the nearest neighbor is done on an

*] optimal basis which may or may not take into consideration the statistical properties of
the pattern to be classified. Optimality is usually sought by defining a distance meas-

ure which is thought to be best representative of the properties of the space dealt with.
For example, in IRn the second order Euclidean norm is often considered as the

*optimality criterion.

2.2 Fault Location Based on Minimum Sum of Squared Deviations
Hochwald and Bastian in 14] described a method for fault location using a d.c. ana-

log fault dictionary. Their study involved an extra step called fault detection. They
used SYSCAP II simulator to calculate node voltages und, r nominal and faulty condi-
tions of the video amplifier of Fig. 2.2.

Fault detection:
Denote by VI(NOM),...vn(NOM) the nominal computed node voltages, and by

v1 (f),...,Vn(f1 ) the computed voltages under fault condition (fi) of the corresponding

nodes. The sum of squared deviations computed as:
n n

(Avkj2 - I Vk(NOM) - vk(fi)I 2 2.1
k=! k=1

was found by them to be always greater than 0.5 n (where n is the number of nodes) in
" case of successful isolation of the fault later "n the analysis, which means an average

deviation of approximately 0.7 volt. This suggested that a minimum of 0.5 n sum of
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squared deviations is required in order to detect the fault. The only degree of freedom
allowed to achieve this for a particular set of arbitrarily chosen test nodes is varying
the input stimuli as shown in Fig. 2.3 taken from 14).

Forming ambiguity sets:
The :0.7 volt average deviation was taken as the range of variation for nominal

and simulated faulty voltages. The possibility of overlapping ranges is there. However

the ranges themselves are not needed once the faults belonging to every ambiguity set
are identified. A problem may exist if some fault exists in the overlap area between
two adjacent ranges. However, this was not mentioned, and it seems that human inter-
vention had to be used to select the ranges in such a way to prevent this situation.

The result is listed in Table 2.1. The notable thing about this table is the exclusion of
the nominal ambiguity set on the basis of the 0.5 n detection criterion. It was believed
that faults producing node voltages in the nominal range make the measurement of

these voltages useless. We believe that this is a loss of information that caused some
unnecessary effort later on during the isolation process. The use of nominal ambiguity
sets will prove to be useful in the new algorithm to be explained in the next sections.

Fault isolation:

At this point, it has to be assured that the chosen set of nodes is capable of unique
characterization of all faults. It is also important to discover if there are unnecessary
measurements which do not help in isolation. The ground rules stated by the authors
to check the above two features are:

1. Any ambiguity set which has a single fault within it, uniquely defines that fault at
that test node.

2. Ambiguity sets whose intersection or symmetric difference result in a single fault,
also uniquely identify the fault.

Indeed the symmetric difference between two sets (of two different node) must be

the intersection of one of them with the nominal ambiguity set of the other node which
has been omitted.

Starting with the ten nodes in Table 2.1 and using the above mentioned rules it
4 was possible to find a subset of only five nodes (11, 8, 5, 2 and 16) which were sufficient

for unique isolation of all faults except the pair 10 and 12. This means isolating 95 per-

cent of the listed 20 faults.
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Table 2.1. Ambiguity sets of faults simulated in the video amplifier of fig. 2.2. The
nominal set contains the rest of the 20 faults.

Node Input Set No. 1 2 3 4 5

* 11 +30 3,6,7,15,19 nominal
-30 2 5 13 14 nominal

8 +30 3 7 15 16 nominal
-30 2,4,5,13 nominal

5 +30 3,6,7,15 nominal
-30 2,4,5,13 9 17 18 nominal

2 +30 3,6,7,15 19 20 nominal
-30 2,4,5,8,9,13,17 nominal

27 +30 3,6,7,15,19 nominal
-30 2,4,5,8,9,13,17 nominal

26 +30 3,6,7,15,19 nominal
-30 2,4,5,8,9,13,17 nominal

33 4-30 3,6,7,15,19 nominal
-30 2,4,5,8,9,15,17 nominal

36 +30 nominal
-30 nominal

18 +30 nominal
-30 nominal

16 +30 3,6,7,10,12,15,19 nominal
-30 2,4,5,8,9,15,17 11 nominal

Fault location:
The fault dictionary then consists of the values of the simulated voltages of the

selected nodes for both inputs under all fault conditions which results in (5x2x19) 190
* real numbers. To illustrate the use of the dictionary three faults were simulated on the

circuit board and measurements of the five test nodes were taken. The procedure to be
followed afterwards is:

1. Finding the difference between simulation results and measured values.
2. Finding the sum of the squares of these differences under both input conditions.
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Table 2.2. Measured node voltages versus node voltage predicted by simulation
(M=Measured, P-Predicted and D-Difference)

Simulated Faults

Node Q3BES Q6BES DZIS

Input -30 +30 -30 +30 -30 +30
M 5.38 0.15 6.12 0.3 1.82 0.13
P 5.32 0.15 5.93 0.2 1.7 0.11

•I D 0.06 0.0 0.19 0.1 0.12 0.02
M 6.45 6.46 0.06 6.44 0.07 6.46

8 P 5.99 5.99 0.09 5.97 0.06 6.0
D 0.46 0.47 0.03 0.47 0.01 0.46

M 0.06 0.06 6.38 0.07 6.38 0.07
P 0.09 0.09 5.93 0.09 5.92 0.09

5 D 0.03 0.03 0.45 0.02 0.45 0.02
M 6.73 6.77 0.09 6.85 0.09 6.73

2 P 6.05 6.95 0.12 6.91 0.12 6.95
D 0.22 0.18 0.03 0.06 0.03 0.22
M 0.10 0.13 2.26 3.95 2.31 0.13

16 P 0.02 0.03 3.07 4.22 3.11 0.03
D 0.08 0.10 0.81 0.27 0.8 0.10

0

0
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Table 2.3. Sum of the squared deviations for three hardware induced voltages.

Induced Faults

Fault 4 Q3BES Fault 10 QOBES Fault 4 DZIS

Fault No. -30 + 30 Total +30 -30 Total +30 -30 Total

1 130 0.3 130 1 16 17 18 0.3 18

2 29 0.3 29 163 16 179 129 0.3 129

3 128 171 299 0.9 154 155 18 171 189

4 0.3 0.3 0.6 128 16 144 139 0.3 139

5 7 0.3 7 132 16 148 167 0.3 167

6 128 103 231 0.9 87 88 18 102 120

7 128 100 228 0.9 85 86 18 99 117

8 69 0.3 69 53 16 69 70 0.3 70

9 109 0.3 109 57 16 73 74 0.3 74

10 129 17 146 0.9 0.3 1.2 18 17 35

11 119 0.5 119 3 11 14 20 0.6 20

12 129 17 146 0.9 0.3 1.2 18 17 35

13 93 0.3 93 127 16 143 300 0.3 300

14 141 0.3 141 20 16 36 0.9 0.3 1.2

15 129 177 306 0.9 160 161 18 178 196

16 129 22 151 0.9 38 39 Is 22 40

17 264 0.3 264 126 16 142 143 0.3 143

18 96 0.3 96 23 16 39 40 0.3 40

19 129 86 215 0.9 68 69 18 86 104

20 129 19 148 0.9 35 36 18 18 36
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3. Finding the smallest number in these sums.

The actual fault is expected to produce the smallest sum of boxes. The results of the
above three steps are shown in Tables 2.2 and 2.3 with the minimum sum of squares

"* ."enclosed in squares. The fault pair 10 and 12 which could not be isolated are seen to
* give the same sum of squares.

3. A NEW ALGORITHM
The basis of the new algorithm is making full use of the ambiguity clusters of

faults which have almost the same effect on terminal measurements. The result is to
*confine our interest only to the ranges of voltages occupied by measurements of a faulty

circuit instead of the whole continuum of values. This effectively transforms the prob-
lem from analog to digital. However this digitization yields multivalued logical
response instead of the usual binary. It is easy to see that this can be further
transformed to binary logic if every set of faults is treated as a binary variable. If the
response lies within the range (vmin,vm.) a logical 1 is obtained. Otherwise it gives a
logical zero. This is shown in Fig. 3.1. The isolation process can be looked at as a logi-

*cal realization problem whether it be in binary or multilevel form. We will first present
"* the solution in the multilevel form for better clarity, then proceed to consider impor-

tant implications of the binary representation. The requirement of the realization prob-
lem is to obtain a digital expression for every fault (as a digital function) in terms of
the digital variables which are the ambiguity sets. A systematic fault tree generation
will be shown next, which simultaneously achieves the following:

* 1. Eliminate the redundancy in the test measurements.
2. Find out the maximum isolation capability of the initially chosen set of measure-

ments.
3. Generate the required logical expressions of the faults. These logical expressions

will form the required dictionary. The arrangement of the expressions in the dic-
tionary will make the fault location task fairly easy and efficient. To prevent con-
fusion, we should note here that the logical expression will be described often as
"fault code". We will also use the word "set" sometimes instead of ambiguity set.

3.1 Forming Ambiguity Sets
Classifying the faults into ambiguity sets depends on some tolerance of the node

voltages. In the example to follow in this section a tolerance of -0.7 volts is used. The
faults are divided into ambiguity groups which cause the node voltage to be in
corresponding ranges. Each range is centered around the voltage value due to some

6 fault called the center of the ambiguity set. Eventually, each node will produce
different grouping of the faults depending on how the faults affect this particular node

0
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voltage. Thus there will be several ambiguity sets of faults, or just one set, associated
with each node. Since there is no priority given to any particular fault, the ambiguity
sets of every node can be found from "the node" voltages under different fault condi-
tions by the following procedure:

1. Start with the nominal case as the center of ambiguity set j, j I 1 (called nominal
set).

2. Scan all faults. If any voltage is within A0.7 volt of the center voltage, include the
corresponding fault in the set j, j = 1.

3. When all faults are scanned, take the first fault which has not been included in a
previous set to be the center of the new set and let j = j+ 1. If every fault has been
included in some set stop.

4. Do the same as step 2 for the current set j. If an overlap occurs between the range
of this set and any previous range, divide the overlap region into two halves. Any
voltage in the overlap region will cause the corresponding fault to belong to the set
whose center is nearer. Go to step 3.

3.2 Fault Isolation
Given the ambiguity sets derived from the simulation results, the algorithm

proceeds as follows. Integer values are assigned to the ambiguity sets of every node in

the set of nodes {vi} N', where N, is the number of test nodes. The different nodes will
generally possess different numbers of ambiguity sets. The iPh node has Li sets includ-
ing the nominal ambiguity set (i.e. faults which do not cause deviation from the nomi-
nal response).

A fault is characterized by being the single element contained in any set or the
intersection of any number of sets of different nodes (since any fault belongs only to one
set of every node). Therefore, intersection operations will be performed. The object to
be achieved is to have a number of sets resulting from intersection which is equal to the
number of faults Nf. In this case, all faults will be isolated since every set cannot con-
tain more than one fault and in the same time every fault cannot be contained in more
than one set.

If all sets of all nodes are exhausted without achieving Nf nonempty intersections,
the result will be the best degree of isolation that can be obtained with the available

* nodes. In this case, some sets resulting from intersection will still contain more than
one fault. These contents cannot be distinguished using only these nodes without addi-
tional input stimuli.

If it happens after intersecting the sets of some node with the resulting sets of pre-
vious intersections that the total number of sets is not increased, then no information is
added by this new node. This means that this node is redundant and has to be
excluded. This would imply that there is no redundancy in the set of nodes obtained
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after intersection, but it would not guarantee that the number of nodes is minimum,
i.e. there is no subset of these nodes which could achieve the same degree of isolation,
but there could be another set of other nodes, less in number, and same in isolation

capability. This depends on the sequence of nodes being intersected. However, to

approach the minimum number of nodes, one should give priority to nodes with higher
isolation capability, which is in this case represented by a larger number of ambiguity
sets.

The exact minimum number of nodes may not be of considerable practical impor-
tance. The minimization problem will be presented later in the context of Boolean
representation of the isolation process. The solution to the problem, though known, is
time consuming. The isolation process is illustrated in the fault tree diagram of Fig.
3.2.

3.3 Generation of fault codes:
The third goal of the algorithm which is generating the fault codes is done using a

"labeling technique" (after a well-known graph algorithmic notion [8]) which employs
the integer values assigned to the different logic levels (i.e. the different ambiguity sets).
The method is basically describing every fault in terms of the sets in which this fault is
a common member. This is done by identifying every set resulting from intersection by
the labels of the sets producing it, in proper order. After the last intersection step, we
will have an integer code characterizing every fault. The length of the code is equal to
the number of nodes. The implementation of this part requires a stack (an expandable

storage) which is updated after every intersection. This will be best illustrated through
the example treated next. A flow chart of the whole isolation process is shown in Fig.

3.3.

The algorithm:

Denote by v(ij) the ambiguity set j of node i (it will be used to express both the
voltage range and the fault contents). For example, v(l,3) refers to ambiguity set 3 of

the first node which is VT2. Let the number of nodes be N., the number of faults be

Nr and the number of ambiguity sets in the iA node be Li. Create two 2-dimensional
arrays x(l) and y(l) of capacity NfxNr integer storage locations, so that we have Nr x's

and y's accounting for a maximum number of Nf sets resulting from intersection. Each
* x or y should accommodate a maximum number of Nr integers accounting for the

faults. The index referring to the fault number has been omitted. Therefore, the index
I in x(l) denotes the Ith set resulting from intersection of other sets. Also create an
NrxN, two-dimensional stack s(l,n) such that each of the Nr registers written vertically

in a column can store up to N, integer numbers in a row. This stack will eventually

4 contain the required fault codes while the corresponding faults will be in the x storage.
The y storage is for temporary holding of the intersection results. The algorithm then

.4
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proceeds as follows:

1. Let n =1 as an index for the number of nodes.
2. Find the node il that has the maximum number of sets L1. Load the first column

of the stack with the ambiguity set numbers of node ij:

s(j,l) = j j = I,...,L1  (3.1)

And load x(j) with the contents (faults) of set j.
3. Let n = n+ 1. If n > N, stop. Otherwise find the node i2 that has the next max-

imum number of sets L2.
4. Letl = l,j = I andkl.
5. Take the intersection:

y() = x(j) n v(i 2,k) (3.2)

where v(i 2k) contains the faults of the ambiguity set k of the node i2.
6. If y(l) - 4 take the next set v(i 2,k), k = k+ 1 or if the sets of node i2 are exhausted

take the next set x(j), j = j+ 1, then set k = 1 and go to 5.
If y(l) 0 0 and 1 = 1 (i.e. the first intersection of the set x(j)) skip the following
stack updating and go to 7.
If y(l) ; 0 and 1 0 1 update the stack contents as follows:

s(l,m) = s(l-1,m) m = 1,...,(n-1) (3.3)

7. Add the set index k of the current node i2:

s(l,n) = k (3.4)

8. If I < Nf let 1 = 1+1, k = k+ 1 and go to 5. If 1 = Nt stop. If all intersections
have been made while I = L1, decrement the node index n = n-I and go to 3 to
consider a new node. This conditions will happen if the node i2 is redundant and
does not help breaking any ambiguity, thus yielding the same number of sets. Note
also that:

I < Nf (3.5)

L1 < 1 (3.6)

L2 < L, (3.7)

If all intersections have been mode yielding Nf > I > L I, move the result of inter-
section from y to x and go to 3 to get a new node.
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No 1 1
x

9(I,n) =k

Yes

n =n- 1<N

L 1 1 Stopk=k+l

Figure 3.3 Flow chart of the isolation algorithm.
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Example 3.1
The video amplifier shown in Fig. 3.4 has been analyzed using a program for hard

fault simulation which employs the method of complementary pivot theory described in
[6]. The equivalent circuit is shown in Fig. 3.5. The faults simulated are listed in
Table 3.1. Initially eleven test nodes were chosen and the node voltages were computed

* by the program. The result is shown in Table 3.2 for the nominal and the faulty cases
where the nominal case is assigned the number 1 among other faults. The program
divides the faults into ambiguity groups, each group centered around some fault with
±0.7 v range on each side of the response due to this fault. In case an overlap occurs,

*the overlap region is halved between the two overlapping ranges. If any fault happens
to be in the overlap region, it is included in the set whose center fault is closer to this
fault. The result of forming the ambiguity sets and finding the ranges of the sets is
shown in Table 3.3 with every set assigned an integer number.

As an example consider the classification of faults into ambiguity sets according to
the simulation results in table 3.2, and particularly consider the first node in the table

* which is VT2:

Set 1:

Center fault: 1 (nominal case)
voltage range = 1.211 - 0.7

(3.8)

-0.511 -. 1.911

searching in the table for faults which cause the voltage of VT2 to be in the above
range, they turn out to be faults 1, 4, 6, 8, 10,11, 13, 14 and 16.

Set 2:

Searching for the first fault which has not been included in the nominal set, fault 2
is taken to be the center of set 2. The coincidence between the center fault and set
numbers in this set and the previous one is merely an accident.
voltage range = 5.81 ± 0.7

(3.9)
= 5.11 -"* 6.51

Comparing the range of set 2 to that of set 1, we find that there is no overlap and
no modification is needed. Faults which cause the voltage of VT2 to be in the
above range are 3 and 5 in addition to the center fault 2.
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Table 3.1. Definition of Faults.

number description

1 nominal case
2 L I and/or L2 open
3 L4 open
4 L3 open
5 L7 open

6 L5 and/or L6 open

7 Qibase open
8 Q2 base open
9 C4 shorted

10 C6 shorted

11I C3 shorted
12 C5 shorted
13 C8 shorted

14 C9 shorted
15 Q1, B-E shorted

16 Q2, B-E shorted
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FILLT-VT TABLE

FALT #O 1 2 3 4 5 6 7 9 to

VT 2 1.2111400 5.60140E0 5.910E+00 1.2111+00 6.274E#00 1.211E+00 9.000E+00 1.2119400 2.921-14 1.2311E144

VT 6 3.650E-01 3.6504+00 3.650(400 3.651-01 3.914+00 3.6501[-01 5.641-14 3.650-01 I.IIA-12 2.65041

VT 7 -. 0OOE00 -6.00(400 5.610E400 -00)01.00 6.360Ot00 -. OO(400 -3.000(00 -304)OO(00 -8.O0+oO -2.00"01.0

VT 9 -6.949E400 5.310(00 5.IO[4.00 -6.949(400 6.274(000 -6.9494+00 -6.000E400 -6.9499#00 -3.000E400 -6.14214*

VII 6.210E-01 6.210E-01 6.2106-01 6.210E-01 3.9051+00 4.065E400 6.2101-01 9.091-13 6.2101-01 -6.1421400

VT12 3.650E-01 3.650E400 3.650'100 3.650E-01 3.911E+00 3.650E-01 5.664E-14 3.6501-01 1.112-12 3.650C-41

VT13 2.050E+00 2.050E400 2.050E#00 2.050E400 6.493(400 6.737E400 "2.05014O0 6.000E00 2.0501400 -3.9761400

VTI4 1.603E400 1.603E400 1.603E400 1.603(400 6.390(400 6.643E1+00 1.603E400 O.0004+00 1.6031400 -438741440

VTII -B.0006400 -6.000(400 -6.0001400 -6.00014#00 6.380E+00 -3.0001400 -9.0001+00 -6.0001400 .4.0001400 -@.00014*

VTi9 -9.000E400 -6.00O400 -3.000E400 -9.000E400 6.390E400 6.643E400 -6.0004+00 -6.0004+00 -8.00014 0 -6.000E400

Re VT21 0. 0. 0. 0. 0. 0. 0. 0. 0. 6.

rULT 00 11 12 13 14 15 16

VT 2 1.'I1I(400 2.1794+00 1.2114+00 1.2111400 5.0004+00 1.2114+00

VT 6 3,650F-01 1.353E400 3.650E-01 3.650E-01 5.000(1400 3.6504-01

VT 7 -8.000(00 -9.0004 00 -. O006+00 -8.000(400 -8.000E400 -3.0001400

VT 9 -6.949E+00 -7.0994+00 -6.949E+00 -6,949E400 -3.00I0(00 -6.949E400

VTII 6.2106-01 5.951E-01 1.137E-12 6.210E-01 6.210E-01 6.OOS'400

VII2 3.$S06-01 1.566E400 3.650E-01 3.6501-06 5.000(400 3.650E-01

VT13 2.050E400 2.0154+00 -5.655E-27 2.050E4+00 2.050E+00 6.1441400

V114 1.603E400 1.5661400 -7.953E-13 1.603E+00 1.603100 6.0051400

VIe -8.006400 -3.0006+00 -.10001400 -8.000(400 -6.0001+00 -6.0001400

VI19 -8.000E400 -6.000(400 -. O00E400 -9.000E+00 -6.000E400 -9.000400

VT2I V. 0. 0. -3.000400 0. 0.

e

• Table 3.2. Node voltages of the amplifier iD example 3.1 under 16 fault cases.

0e

.6 . . . .1d " . L . J j ' " . .. . . . _ ' % -
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Set 3.

The center fault of set 3 is the first fault which has not been included in any of the
two previous sets. This turns out to be fault 7.
voltage range = 8.0 - 0.7

(3.10)
=7.3- 8

The upper voltage of the range is taken to be 8.0 not 8.7 because the maximum
supply voltage is 8.0 volts. A search in Table 3.2 indicates that fault 7 is the only
one in this set. The voltage range does not overlap with previous ranges.

Set 4:

Center fault: 9
voltage range = 0.0 - 0.7

(3.11)

-0.7 --+ 0.7

By comparison to previous ranges, we find that this range overlaps with the range of
set 1. Henceforth modification is needed to lower the upper voltage of this range
and raise the lower voltage of the range of set 1. This results in
voltage range of set 4: -0.7 -- 0.605
voltage range of set 1: 0.605 --- 1.911
Fault 9 turns out to be the only fault in set 4.

Set 5:

Center fault: 12
voltage range = 2.179 - 0.7

(3.12)
= 1.479 - 2.879

No overlap exists with any previous range, and the set contains no other fault
4 beside fault 12.

*. Set 6:

Center fault: 15
voltage range = 5 - 0.7

= 4.3 - 5.7

Modification of the overlapping ranges of this set and of set 2 results in:
voltage range of set 6 = 4.3 - 5.345

(3.13)

4 voltage range of set 2 = 5.345 -. 6.51

No other faults exist in set 6.

-4 .. . . ; _
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Table 3.3. Ambiguity sets of example 3.1.

Node Set Center Range faults
fault from to

1 1 0.605 1.911 1,4,6,8,10,11,13,14,16
2 2 5.345 6.51 2,3,5

VT2 3 7 7.3 8.0 7
4 9 -0.7 0.605 g
5 12 1.479 2.879 12

i 6 15 4.3 5.345 15
1 1 -0.335 1.065 1,4,6,7,8,9,10,11,13,14,16

VT6 2 2 2.95 4.325 2,3,5
3 12 6.534 2.053 12
4 15 4.325 5.7 15
1 1 -8.0 -7.3 1,2,4,6,7,8,9,10,11,12,13,14,15,16

VT7 2 3 5.11 6.51 3,5
1 1 -7.47 -6.55 1,4,6,8,10,11,12,13,14,16
2 2 5.11 6.51 2,3,5

VT9 3 7 -8.0 -7.47 7,9,15
4 10 -6.55 -5.44 10
1 1 -0.079 1.321 1,2,3,4,7,8,9,11,12,13,14,15
2 5 3.205 4.605 5,6

VTII 3 10 -6.842 -5.442 10
4 16 5.305 6.705 16
1 1 -0.335 1.065 1,4,6,7,8,9,10,11,13,14,16

VT12 2 2 2.608 4.325 2,3,5
3 12 0.865 2.608 12
4 15 4.325 5.7 15
1 1 1.35 2.75 1,2,3,4,7,9,11,12,14,15,16
2 5 5.79 7.19 5,6

VT13 3 8 7.3 8.0 8
4 10 -4.676 -3.276 10

__ 5 13 -0.7 0.7 13
1 1 0.903 2.303 1,2,3,4,7,9,11,12,14,15,16

VTI4 2 5 5.68 7.08 5,6
3 8 7.3 8.0 8
4 10 -5.574 -4.174 10
5 13 -0.7 0.7 13
1 1 -8.0 -7.3 1,2,3,4,6,7,8,9,10,11,12,13,14,15,16

VT18 2 5 5.68 7.08 5
1 1 -8.0 -7.3 1,2,3,4,7,8,9,10,11,12,13,14,15,16

VTI9 2 5 5.68 7.08 5,6
1 1 -0.7 0.7 1,2,3,4,5,6,7,8,9,10,11,12,13,15,16

VT21 2 14 -8.0 -7.3 14

(Draft Copy) Notmmber 8. 1982

I1
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The intersection process is started by the two nodes having the maximum numbers
*of sets which are VT2 (6 sets) and VT13 (5 sets) as shown in Table 3.4. The result of

intersection is eleven nonempty sets. The faults in those new sets are listed in the
matrix location identified by the row and the column corresponding to the generating
sets of VT2 and VT13 respectively. The fault code at this stage consists of only two
digits denoting the numbers of the intersecting sets of the corresponding nodes. This is
shown in Table 3.5 in an array form before and after intersection. The stack contents
before intersection consisted only of the indices of the ambiguity sets of VT2 in the
corresponding column. After intersection with the sets of VT13 the stack was
expanded to accommodate the 11 sets. The stars to the left indicate that the contents
of the stack were pushed down at this position. This happened when an original set
had more than one intersection with the new sets in which case the original code had to
be repeated. The sequence of nodes considered in intersection is VT2, VT13, VTI4,

* VT6, VT9, VT11, VTI2, VT7, VT18, VTI9 and VT21. The stack contents and the
faults in the corresponding ambiguity sets after intersection with every irredundant
node are shown in Table 3.6. The number of sets after intersection with nodes 14, 6, 9,
12, 18 and 19 did not increase. Therefore these nodes were excluded from the diction-
ary.

The final table of fault codes (Table 3.7) has two faults (4 and 11) unisolated.
Referring to the fault list in Table 3.1, these turn to be L3 open and C3 short. In such
cases the degree of isolation may be accepted and each of the two components may be
checked individually after the test if measuring the five nodes 2, 13, 11, 7 and 21 yields
the nominal d.c. response, (Note that faults 4 and 11 are in the nominal ambiguity set)
which does not add much more effort. In other cases of more ambiguity, d.c. input
stimuli may have to be used to reduce the ambiguity as will be seen in a later section.

3.4 Fault location
To illustrate the use of the dictionary, suppose that we have the following meas-

urements obtained from a faulty video amplifier:

VT2=1.2 , V13=8.0, V11=0.5, V7=-8.0 and V21=-8.0

Referring to Table 3.2, we find that the fault is in ambiguity set 1 of node 2, set 3 of
node 13, set 1 of node 11, set I of node 7 and set I of node 21. The integer code is

then 13111. Now referring to Table 3.7 we find that this corresponds to fault 8.
Further referring to Table 3.1 we see that it means transistor Q2 base open.
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Table 3.4. Intersection of the ambiguity sets of nodes VT2 and VT13.

_____________VT13

Set ___ 1 2 3 4 5
1,2,3,4,7,

Faults 9,11,12,14, 5,6 8 10 13

1 10,11,13 16

2 2352,35
V'T 3 7 7

5 12 12
6 15 15
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Table 3.5. Stack contents before and after intersection of the sets of nodes 2 and 13.

Intersection Stack X storage

index (1) VT2 faults

1 1 1,4,6,8,10,11,13,14,16
2 2 2,3,5
3 3 7
4 4 9
5 5 12
6 6 15

Before

Intersection Stack X storage

index (1) VT2 VT13 faults

2 *1 2 6
3 *1 3 8

44 *1 4 10
5 *1 5 13
6 2 1 2,3
7 *2 2 5
8 3 1 7
9 4 1 0

10 5 1 12
11 6 1 15

After
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Table 3.6. Stack contents and isolated faults after intersection with irredundant
nodes.

Intersection Stack X storage

index (1) VT2 VT13 VT1I Faults
1 1 1 1 1,4,11,14
2 *1 1 4 16
3 1 2 2 6
4 1 3 1 8
5 1 4 3 10
6 1 5 1 13
7 2 1 1 2,3
8 2 2 2 5
9 3 1 1 7

10 4 1 1 9
11 5 1 1 12
12 6 1 1 15

a) After intersection with VTII

Intersection Stack X storage

Index (!) VT2 VT13 VTII VT7 Faults
1 1 1 1 1 1,4,11,14
2 1 1 4 1 16
3 1 2 2 1 6
4 1 3 1 1 8
5 1 4 3 1 10
6 1 5 1 1 13
7 2 1 1 1 2
8 *2 1 1 2 3
9 2 2 2 2 5

10 3 1 1 1 7
11 4 1 1 1 9
12 5 1 1 1 12
13 6 1 1 1 15

b) After intersection with VT7

0
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Table 3.7. Fault Dictionary of Example 3.1.

Fault Code Fault number
(V2,V13,V1 1,V7,V21)

I11 11 1,4,111
I1 1112 14
1 1411 16
122 11 6
131 11 8
1431 1 10
1 51 11 13
21 1 11 2
2 112 1 3
22 2 21 5
31 111 7
41 1 11 9
51 1 11 12
61 1 11 15
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4. BINARY REPRESENTATION OF THE ALGORITHM

The better insight into the problem which we will have through its binary aspect
will reflect into easier implementation of the software of the isolation algorithm and the

hardware of the ATE. It will also provide the solution to the problem of minimizing

the number of test nodes. The binary nature of the problem arises from two basic

features:

1. The measured response will either be in a particular range or not.

2. If a response is found to be in a certain range, a fault will either be in the

ambiguity -et identified by this range or not, (i.e. it could be one of the possible
faults to have caused the trouble or not.)

The first feature has been shown to convert the ambiguity set range

to a binary variable which takes the value one if the response lies within the

range and takes the value zero otherwise as shown in Fig. 3.1.

4.1 Ambiguity Set-Fault Truth Table
In the same sense, every fault can be considered as a binary variable which is a

function of all ambiguity sets of all the n test nodes. Every fault will take the value

one exactly n times when the binary variables representing the corresponding ambi-

guity sets containing the fault are equal to one. Any other combination of binary

values for the ambiguity sets will result in a value zero. In Table 4.1 a truth table is

shown for the m binary functions representing the faults in terms of all the binary vari-

ables representing the ambiguity sets. The number of these binary variables is equal to
n

N = Li, where L i is the number of ambiguity sets of node i. The binary variable
i=!

representing ambiguity set k of node i is written as v(i,k). The term denoted by this

set means that vb(i,k) takes the value 1 while the other sets assume an unknown combi-

nation. This combination itself is actually immaterial as will be shown in the isolation

process. The total number of possible combinations of the N variables {(v(i,k)} is equal

* to 2 N . However N terms are only shown because the rest (2N-N) terms cannot happen.

They cannot happen because the combination of sets is determined by the faults which

have possibly occurred, and the reduced truth table give all such possi4 ties. The
"can' t happen terms" are useful in obtaining minimal realization.

The problem of fault isolation can now be stated in terms of binary function reali-

zation. It is required to synthesize a combinational binary logic whose input is the

binary variables for the ambiguity sets (derived from the measurements as in Fig. 3.1)
and whose output consists of m lines representing the m binary functions representing

the m faults. Therefore the fault isolation system can be considered as an ambiguity

O set-fault decoder. As such, the fault location task is accomplished using exactly the

* same binary logic obtained during isolation. However, there are various aspects of the

-
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*Table 4. 1. Truth table of the binary functions representing the m faults.

f1b f2b f3b .. mb

Vb(1, 1) 1 0 0 1

Vb(2,2) 0 1 1 0

Vb(1,L) 0 0 0 0

Vb(2,1) 0 1 0 1

Vb(2,2) 1 0 0 0

Vb(2,L 2) 0 0 1 0

Vb(3, 1) 0 0 1 0

Vb(3,2) 0 0 0 1

Vb(3,L 3) 1 1 0

Vb(n, 1) 0 1 0 1

vb(n, 2 ) 1 0 0 0

Vb(n,Lfl) 0 0 1 0
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ATE hardware implementation, one of which will be considered in a comparison of the
storage requirements against the minimum squared deviation algorithm.

If the realization of the functions {fib} was to be considered separately for every
individual function, it would have been a straight forward sum of products (SOP) reali-
zation [0]. However, there are two problems involved that have to be simultaneously

solved.

1. Finding minimal expressions for all the faults.
2. Assuring that there is no more than one fault condition having the same reali-

zation except to the degree of isolation required.

A simple hypothetical example will be first shown to clarify that the sum of pro-

duct realization will tend to be a single product term which is not canonical (i.e. does

not include all ambiguity set variables). However it includes a variable from every
node. The significance of this will be discussed.

Example 4.1
Consider a 3-fault, 2-node case with each node having two ambiguity sets. Table

4.2 shows the reduced and complete truth tables of the problem. The only canonical

SOP term which will make fib = 1 is vb(l,l).b(l, 2 ).Vb( 2 ,1).Vb(2,2) where the dot
denotes logical AND and the bar denotes the complement. Because the ambiguity sets
of any one node are mutually exclusive (i.e. only one of them can equal one), the fol-
lowing relations hold true:

Vb(1,1).Vb(l, 2 ) - Vb(1,1) (4.1)

Vb(2,1).vb(2,2) = vb(2,2) (4.2)

Hence

fib = vb(1,1)'Vb(1,2) (4.3)

This expression in (4.3) is the same as one of the expressions obtained for f, using the
classical minimization map as shown in Fig. 4.1.

It is clear that the realization which uniquely identifies every fib is in general the

term represented by the product of the ambiguity sets including the fault, which can be
0 obtained directly from the complete truth table (table 4.2) without referring to the

map. This can be done if we consider only the prime implicant of fi such that
corresponding values for other functions are zero or "can't happen". Then use the
relation

fl vb(i,k)Vb(i,I- n vb(i,k) (4.4)
for all k and I for all k

-
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Table 4.2. Truth table of example 4.1.

Reduced Truth Table of Example 4.1.

f1b f2b f3b
Vb(1) =1 1 0 0
Vb(1,2) =1 0 1 1

Vb(2,) =1 0 1 0

Vb(2,2) = 1 1 0 1

Complete truth table of example 4.1.

0 0 0 0 x x

0 0 1 1 x x
0 0 1 1 x x

o 1 0 0 x x
o 1 0 1 x x 0
0 1 1 0 0 1
0 x x
1 0 0 0 x x x
1 0 0 1 1 0 x
1 0 1 0 x x 1
1 0 1 1 x x x

411 0 0 x x x
11 0 1 x x x

111 0 x x x
1 11 x x x

x can't happen

-- - - --
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However, obtaining the complete truth table for a realistic large scale problem is
not an easy matter. Meanwhile, the reduced table readily provides the means for
finding a realization in a backwards way. We can use (4.4) such that the result is one

for and zero for other functions. As we mentioned, each row in the reduced truth
table assigns the value, one for the corresponding set without regard to other sets. The
actual values of other sets are unimportant, e.g. the first term in the reduced table 4.2
means that if Vb(l,l) = 1 then fib = 1, f2b = 0 and f3b = 0 regardless of the values
taken by vb(2,1) and vb(2,2). Of course, when we say Vb(1,1) = 1 we implicitly mean

,* that vb(1, 2 ) = 0. Then vb(l,l) is the logical OR of the following two terms

b(l,2)Vb(2,I)rb(2,2 ) + Vb(l,l)Vbl,2)Vb(2,l)Vb(2,2)

*g - Vb(l,l)Vb(l,2)[Vb(2,1) + Vb(2,1)]

- vb(, l)rb(1, 2 )

- Vb(ll) (4.5)

This example demonstrates that the functions {fib} can be realized using noncanonical
product terms with the aid of the basic relation (4.4). Every product term realizing a
function fib must include all variables corresponding to a prime implicant of the func-
tion. This implies that it includes an ambiguity set from every node encountered in the
realization. If no attempt is made to reduce the number of nodes, the expression for
every fib will be the product of all ambiguity sets containng the fault fib, which makes
sense.

We emphasize that the product term is generally not the minimum. For example,
11h in example 4.1 can be realized by vb(1,1) only, however the inclusion of the other
node in other faults realizations will bring in a prime implicant for f1b corresponding to

vb( 2 ,2) which cannot b, ignored. In a practical sense, this means that if any node is to
be mea.sured, we have to make sure that the located fault exists in the correct set of
the measured node, or an error has been made, inspite of the fact the fault can be real-

* ized using only one node or a smaller set of the measured nodes.
A similar situation exists in the fault codes derived in example 3.1 in section 3

where the last 4 faults can be identified using only the first node since these faults are
the only faults which exist in the sets 3,4,5 and 6 of this node respectively. If some
faith is put in these codes and if node measurements are to be done sequentially we can
stop measurement, if the first node voltage range corresponds to one of the sets 3,4,5 or
G. If nwamsurements are taken in parallel, then all sets of all measured nodes have to be
checked to ensure correctness of the fault location.

6
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4.2 Minimallty of the Realization
The word minimality is rather a loose term that is often used to indicate different

objectives [9]. We herein have a special feature that needs no additional testing cost if
" we add more variables in the realization so long as they all belong to the same node.

Therefore, our objective is rather different from conventional senses of minimality.
"- Meanwhile, the minimization has to be done for the multiple output realization (all fib)

and not for a single function. Adding to this the large size of the problem, conven-
tional minimization techniques applied to the truth table of {flb) turn out to be
inefficient.

The realization using the noncanonical product terms mentioned before will be
used to uniquely realize all output functions (except for nonseparable faults). In the
general case, this will yield neither the minimum number of nodes nor the minimum
amount of hardware which is usually measured in terms of the number of gate inputs
and the number of levels in the gate array []. However, the actual minimum may not
be of a real value that is worth doing it. In fact, if any minimization is to be done, it
should be for the number of test nodes to ensure convenience and quickness of the test-
ing procedure. A special form of the minimization problem will now be considered to
achieve this purpose, using what we call "separability" table which is different from the
previous truth tables.

Consider Table 4.3 wherein the columns correspond to the fault pairs {fj and fj+ 1}
and the rows correspond to the nodes {vi). An entry equal to 1 in the row node vi
means that the two faults corresponding to this entry lie in two different ambiguity sets
of node vi. A zero entry means that the fault pair is in the same set. If there is any
pair of faults which cannot be split using any node, all the entries in the column
corresponding to this pair will be zero. Such cases can be excluded from the table.
Any realization of the functions {f(j)j+ 1} will not provide fault isolation (i.e. the deci-
sion rule for fault location). It will only provide a set of nodes which is enough for iso-
lation. Once iis set of nodes is found, we can go back to the truth table of the func-
tions {fib) to perform isolation. The separability table 4.3 can be considered as a truth

*t table with inputs {vi} and outputs (f(j)j+ 1). The number of inputs is n. The missing
(2n-n) combinations really cannot happen because the complement of vi has no mean-
ing. However the realization desired is different from the conventional sense in that not
all prime implicants need to be considered. Indeed any vi corresponding to a prime
implicant of a fault pair is an enough realization for this pair, i.e. it will split it. The
smallest number of nodes which guarantee at least a single prime implicant for every
fault pair is the required minimum. This can be obtained using the product, term reali-
zations then manipulating these terms to find the minimum set {vi) such that every
term contains at least one node of this set. This will be demonstrated through an
example.

-
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Table 4.3. Separability table.

f 12 f 13 f14 f23 f24 f(j)j + I f(m-1)m
v1  1 0 0 0 0 10

V2  1 0 0 0 0 10
V3  1 1 1 1 1 0 1

Vn 0 0 0 0 0 1 1
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Vb(2,1) Vb(2,I)

x x x x rb(1,2)
Vb(1, 2)

x x x 0
Vb(1,2)

x x x x
Vb(I 1)

X I x x Vb(1,2)

Vb(2,2) Vb(2,2) Vb(2,2)

Fig. 4.1. Minimization map of fib in example 4.1.

fib = Vb(1,1)

= Vb(2,2)

-Vb(1,2)

= Vb(2, 1)

= Vb(1,1)v(2,2)

Possible realizations Of fib

using different one-zero
assignments of the can't happens.
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Ezample 4.2
Consider the separability table 4.4 for a 5-node 5-fault case, each node having 2

ambiguity sets. The fault contents of the sets are shown in Table 4.5. The product
term realizations for the 10 different combinations of fault pairs can be easily deduced
from the separability table as follows:

f 12 - v 4v5

f 13 - v2 v 3v 4

f 14 = VlV3 V 4 V5

f 15 -VV2V3

f23= VV 3 V5

f2 4 = viv 3

f25= VlV2 V3V4 V5

f3 4 = VIV 2 V5

f35= VV 4

f45 = v2v4v5

The minimum number of nodes required for isolation is the number of nodes which
if retained in the table while other nodes are excluded, a realization can still be
obtained in the form of a product term for every fault pair. Some of the terms may
include only a single node which is also a realization meaning that the corresponding
fault pair cannot be split without this node. Finding the smallest set of nodes which
will achieve this goal is not easy in the general case. However, the problem can be
simplified by absorbing the redundancy in the expression via logical ORing of all the 10
expressions. This gives

K = v4v5 + v2 v3 v4 + VIV 3 V4V5 + VIV 2 V3+ V2V3 Vs+ VlV3

+ VI V2 V3V4 Vs+ VIV 2V5 + VI V4 + V2V4V 5  (4.6)

Applying the following basic Boolean algebraic relation to the underlined terms [9]:

X+ XY =X (4.7)

we obtain the following simplification:

K = V4 V5+ V2 V3V4+ VlV 2V3 + V2 v 3 v5 + VlV 3 + V I V2 V5

= vIv 4 + v2 v 4v-5 (4.8)

I
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Table 4.5. Ambiguity sets of example 4.2.

Set
node 12

Vi f 1,f2, f3  f4, f5
V 2  f 142,f4  f3A?
V3  fI4f2 ff,

V 4  f II 5  ff,
V5  f~ N ________

Table 4.4. Separability table of example 4.2.

f 12 f13 f14  fIS f23 f24 f2,5 f34 f3-5
V1  0 0 1 1 0 1 1 1 1
V2  0 1 0 1 1 0 1 1 0
V3  0 1 1 1 1 1 1 0 0

4V 4  1 1 1 0 0 0 1 0 1
VS 1 0 1 0 1 0 1 1 0

4
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K - v 4 v 5 + VIV 3 + V2V3 V4 + v 2v 3 vS+ VIV2Vs+ VlV4

In a brute force manner we can tell that there are five possible solutions each provides
3 nodes if only retained in the expression of (4.8) each term will still have at least one
variable (node). The solutions are (v1,v2,v4), (v1,v3 ,v4), (v1,v2 ,v), (VI,V3 ,V5 ) and
(V3 ,V4 ,V5 )"

It is interesting to see that this problem has a graph theoretic equivalent known as
the minimum feedback edge set problem [10]. The complexity of the computer imple-
mentation of the minimization algorithm is exponential in the number of variables [8].

4.3 Fault Isolation
Having obtained the minimum set of nodes, we can go back to the original truth

table to find the SOP realization which will be a single product term including an
ambiguity set from every node (after excluding redundant nodes). This realizations are
guaranteed to identify every fault uniquely, i.e. there should be no more than one fault
having the same expression except any pair of faults which may have been excluded
before minimization.

There is an obvious effort in the process of minimization represented in forming
the separability table then finding the minimum especially because the dimensionality
of the separability table is larger than that of the original truth table. The number of

fault pairs in m faults is r(m-l) which is larger than m if m is greater than 3. If
2

ensuring a minimal number of nodes is not a concern we can find the product term
realizations directly from the original truth table and try simultaneously to solve the
second problem mentioned in the beginning of this section. This means that we have

to make sure that any realization we obtain for any of the faults is not a valid realiza-
tion for any other fault. This can be done only if we operate on all faults simultane-
ously. For example if fj is to be realized by v(il,kl)v(i 2 ,k2)v(i 3 ,k3), then fj is equal to

one if all these three sets are also equal to one. Then every other fault must be equal to
zero when these sets are all equal to one, i.e. the product (logical ANDing) of the

0entries corresponding to these sets under every other fault must be zero. This means
that to realize fi and in the same time avoid valid realizations for other faults we will
be taking the logical AND of the corresponding entries in the whole rows characterizing
the ambiguity sets being considered which is nothing but taking the intersection of the

* sets, which has been used before. There are two ways for the intersection process to
* proceed:

I. Considering every fault fib separately and performing the intersection until we
get, a single nonzero element in the row. This element should of course
correspond to fib. Then the process is repeated for all faults. The test nodes

required in this case are the collection of all nodes realizing all faults.
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2. Following the same objective set in section 3, i.e. intersecting the ambiguity sets
in pairs and storing the result of intersection aiming at obtaining m rows each of
them having a single nonzero element. This is exactly the same method followed
in section 3 except that the intersection can now be obtained using logical AND-
ing of rows which may be stored in a single byte of storage.

We prefer the second way since it allows for wise selection of the sequence of sets
to be intersected in order to approach the minimum by giving priority to the nodes

having the maximum number of ambiguity sets, which we have also done before.
To complete the analogy between the binary and the multivalued forms we will

list the dictionary in the form of binary expressions which can be realized by combina-
tional logic.

4.4 Fault Location
As we mentioned before, the fault location is done directly using the binary expres-

*~ sions derived during the isolation process. The only thing needed in addition to that is
to derive the binary input from voltage measurements.

*Complexity of the algorithm: The intersection operation can now be done with great
simplicity as the fault variables {fkb) will be stored as ones and zeros in one register
(computer word) assuming that its length is greater than Nf. Simple logical ANDing of

binary words will replace the intersection of ambiguity sets. The value of this
simplification will be appreciated when the problem size gets larger.

A bound for the execution time can be easily derived in terms of a basic time unit
T that takes the following two operations to be done.

i) Parallel ANDing of Nr pairs of bits, or simply ANDing of two computer words.
ii) Checking for null intersection, i.e., if the result of ANDing is zero or not. Refer-

ring to Fig. 3.2, we can deduce the following.
i) The time t of operations on two groups of sets whose numbers are LI and L2 is

LIxL 2 x T.
ii) At any intersection stage, the input number of sets in any of the two groups is less

than Nt. Hence

t < Max(Li) x Nfx T (4.9)

where Max(Li) is the maximum number of sets in all nodes. iii) The number of

intersection stages is at most (N, - 1). Then the overall execution time is bounded
according to the inequality

toweral < Max(Li) x Nf x (N, - 1) x T (4.10)

Added to this is, of course, the time needed in other manipulations like

>_
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incrementing indices, etc.

Firmware: There are various possible ways of building an ATE for trouble shooting
Ibased on the logical isolation algorithm. One way is by using a digital comparator to

compare the code generated from the test measurements against other codes in the dic-
tionary. Another way is by converting the codes to their equivalent binary expressions
and evaluating these expressions using a programmable gate array, for instance, with
inputs derived from the ambiguity ranges of the test measurements. For example, the
third entry in the dictionary (12211) corresponding to fault 6 has the binary equivalent.

Kf6b : Vb(l,l)Vb(2,2)vb(3,2)Vb(4,I)Vb(5,l)

If the RIIS expression evaluates to one, fault 6 will be actual fault. Similar expressions
hold for the rest of the faults. As such, the ATE can be viewed as an ambiguity set-
fault decoder. The binary inputs vb(ij) are derived from measurement of vi according
to relation 8. An interesting feature is that the input to the ATE does not need
A/Dconversion but could be derived from the measured voltages using analog compara-
tors as shown in Fig. 3.1.

At any case, the voltage ranges have to be stored in the ATE together with the
fault codes. It is interesting to compare the storage requirements of this algorithm
against those of the least squares method. The latter needs the storage of the fault-
node voltage table which requires a storage of capacity S, given by

S, = NN r  real numbers

= 2NvN f  integers

* The logical isolation requires the storage of the two tables of voltage ranges and fault
codes which requires a capacity S2 bounded by the inequality

S2 N< NV x 2 x Max(L1 ) real numbers

+ [NV x N r] integers

N [N,r + 4 Max(Li) integers

S2 grows as the number of faults while Sn grows as twice this value.

I

ai

U
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5. ISOLATION WITH MULTIPLE TEST INPUT CONDITIONS
The effect of some faults may not be observable on the test nodes under normal

d.c. operating conditions, or equally ambiguously some faults may have the same effect.
This may sometimes be overcome by altering the normal d.c. inputs during testing
procedure to allow the effect of faults to propagate to the test nodes, hoping to be able

*. to distinguish ambiguous faults. The design of the test inputs is another problem
.. which outside the scope of this manuscript. The extension of the algorithm to handle

multiple input conditions is demonstrated in the next example.

Example 5.1
In [4] 20 faults in the video amplifier of Fig. 2.2 have been simulated using SYS-

CAP circuit simulator. The contents of the ambiguity sets of 10 initially chosen test
nodes are shown in table 2.1. The nominal ambiguity sets of all nodes had been
ignored with the belief that they do not help in isolation. It may seem that a node vol-
tage having the nominal value is useless in diagnosis. However, this nominal response
of some nodes in a faulty circuit gives information which is made use of in logical isola-
tion.

With two inputs applied, every node acts like two noes in the one nominal input
case insofar as the amount of information is concerned. This effectively yields the same
problem with double the number of nodes. However, the sense of redundancy now has
been slightly modified. The redundancy remains associated with the number of nodes
rather than the number of measurements which in this case is equal to NiN, where Ni

is the number of inputs. Since the measurements of the chosen nodes will be done
under every input condition, it is of no importance that some node gives redundant
information with a particular input so long as its response with other inputs saves
adding extra nodes. This would imply that before the intersection process is done, the
maximum isolation capability has to be determined for every node. This can be
obtained by considering every node separately and intersecting its ambiguity sets under
all input conditions.

In the example of table 2.1, we will first ignore nodes 36 and 18 whose response is
always indiscriminative. The rest eight nodes, when considered individually under the

* "two input conditions, yield the following count of ambiguity sets:

Node: 11 8 5 . 27 26 33 16
No. of sets: 6 6 6 5 3 3 3 4

The intersection operations can now proceed as in the single input case to determine a
-* group of nodes which will isolate the 20 faults with no redundancy. The sequence of

nodes considered in intersection is also taken in a descending order of the number of
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sets, as it is intuitive that a node having a larger number of sets will have better isola-
tion capability. The process is started by nodes 11 and 8 yielding 11 new sets. The
result of intersecting the rest of the nodes is as follows:

Nodes No. of sets

11,8 11
11,8,5 15
11,8,5,2 17
11,8,5,2,16 19
11,8,5,2,16,27 19
11,8,5,2,16,27,26 19
11,8,5,2,16,27,26,33 19

It is clear that nodes 27, 26 and 33 do not improve the isolation, stopping at only 19
sets which means that there is a pair of faults which have not been isolated among the
original 20 faults.

There are two possible ways the fault dictionary can be formed and stored in the

ATE.

1. If the two input case is viewed as two separate single input cases, then a fault dic-
tionary may be generated for each case on the basis that the two inputs need not
necessarily be both applied during the test. The fault codes for the two cases are

shown in Table 5.1. The test should be first performed with the first input applied.
-* If there is any ambiguity it will be then resolved by applying the second input. It is

clear of course that faults which are ambiguous with the first input are isolated with
-" . the second one with the exception of the pair 10 and 12. The reverse is also true.

As an example, suppose that the fault code is 25242 with the first input applied.
The fault is then one of the group (1, 2, 6, 5, 8, 9, 11, 13, 14, 17 and 18). If the
second input is applied and the code becomes 21111, the actual fault must be fault
2. Obviously if the second input was only applied, fault 2 would have been directly
located. The input to be applied first is naturally the one that isolates more faults,
which is input 2 in this case.

2. If the two input conditions are to be both applied before fault location is attempted,
the two dictionaries have to be combined. The combined fault codes which isolate
18 faults are shown in table 5.2 where the indices of v0 indicate the node and the

input respectively. This of course increases both the storage requirements and the
effort needed in fault location especially if it is done visually. This difficulty in han-
dling the test manually when the dictionary size gets bigger may require fully
automated trouble shooting aids based on the binary representation. At any case,
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Table 5.1. Separate input fault codes of example 5.1.

INPUTI

* FAULT CODE

VTII VT8 VTS5 VT2 MT6 Fault

1 1 1 1 3

1 2 1 1 17

1 5 2 2 1 1

2 3 1 1 1 1

2 4 2 4 2 16

2 5 2 3 2 20

2 5 2 4 1 10 12

2 5 2 4 2 1 2 45 8 911 131417 18

INPUT2

FAULT CODE

* VT11 VT8 VT5 VT2 VT16 Fault

1 1 1 1 2

2 1 1 1 1 5

3 1 1 1 1 13

4 2 5 2 3 14

5 1 1 1 1 4

5 2 2 1 1 9

5 2 3 1 1 17

5 2 4 2 3 18

5 2 5 1 1 8

45 2 5 2 2 11

5 2 5 2 3 1 3 67 10 12 15 ~19 20
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COMBINED INPUTS

V11,1 V1I,2 V8,1 V8,2 V5,1 V5,2 V2,1 V2,2 V16,1 V16,2 Fault
1 5 1 2 1 5 1 2 1 3 3
1 5 2 2 1 5 1 2 1 3 7
1 5 5 2 1 5 1 2 1 3 6
1 5 5 2 2 5 2 2 1 3 19
2 1 5 1 2 1 4 1 2 1 2
2 2 5 1 2 1 4 1 2 1 5
2 3 5 1 2 1 4 1 2 1 13
2 4 5 2 2 5 4 2 2 3 14
2 5 3 2 1 5 1 2 1 3 15
2 5 4 2 2 5 4 2 2 3 16
2 5 5 1 2 1 4 1 2 1 4
2 5 5 2 2 2 4 1 2 1 9
2 5 5 2 2 3 4 1 2 1 17
2 5 5 2 2 4 4 2 2 3 18
2 5 5 2 2 5 3 2 2 3 20
2 5 5 2 2 5 4 1 2 1 8
2 5 5 2 2 5 4 2 1 3 10 12
2 5 5 2 2 5 4 2 2 2 11
2 5 5 2 2 5 4 2 2 3 1

a

Si
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however, the voltage ranges of the ambiguity sets have to be stored for all input
conditions in order to determine the set indices.

6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH
The method for generating an analog fault dictionary described in this report pro-

vides an efficient tool for fault diagnosis by logical means. The fault isolation algo-
rithm presented in section 3 can be easily implemented with some extra software added
to the circuit simulator. The execution time of the fault isolation routine, was shown
to be bounded according to the analysis in section 4. Compared to the time needed for
fault simulation, the logical fault isolation algorithm needs a trivial length of time. All
this analysis is done once for all in the pretest stage. The outcome of logical fault isola-
tion should be as follows:

1. A set of nodes whose d.c. voltage is to be measured during the test, and should be
sufficient to achieve the required level of ambiguity in locating the actual fault after
the test is done. This set of nodes is minimal in the sense that the prescribed
degree of isolation cannot be obtained if any of these nodes is dispensed away with,
which implies that none of the nodes is redundant. The term degree of isolation
could roughly mean the number of faults within which the actual fault is ambigu-
ous.

2. A table of voltage ranges for every node in the resulting test nodes, where every
range is given an integer number that identifies an ambiguity group of faults any of
which will cause the node voltage to be in the corresponding range. This means
that the node voltage is effectively quantized into discrete ranges or multivalued log-
ical levels. This quantization is expected to be always possible so long as the topol-
ogy of the unit under test is such that the simulated faults are clustered in a way
that all faults in a cluster have almost the same effect on a single test measurement.
Of course, these clusters are different for different nodes.

3. A table of fault codes where every code identifies a fault or a group of faults up to
the acceptable degree of isolation. Every code consists of integer numbers derived

.4 from those numbers assigned to the voltage ranges. The code length (number of
integers in the code) is equal to the number of test nodes.

These two tables mentioned above constitute the required fault dictionary which
has to be stored in the ATE. It has been shown in Section 4 that the storage require-

ments of the logically based analog fault dictionary are less than those of the least
square based dictionary. The accompanying hardware is also much easier to imple-
ment. For large scale circuits, these advantages are very well appreciable.

The dictionary approach in general, like all other fault diagnosis approaches, can-
4 not be claimed to be free from uncertainty which is introduced by statistical variations

in component values and consequently of the circuit response. The efficacy of the

..



dictionary also depends on how exhaustive the fault list is. Even with these drawbacks
a dictionary for hard faults can be very efficient in diagnosing a large percentage of
faults. The best reliability is achieved when the dictionary is used in conjunction with
soft fault diagnosis routines, like multifrequency diagnosis, whenever it can be afforded.
This is not always possible of course. For example, in field repairs where computing
facilities are not available, a fault dictionary would be indispensable.

It may be sometimes possible to locate the fault with only fewer measurements
among all measurements to be fed to the ATE. In such cases, completing the diction-
ary measurements may or may not be necessary depending on the level of confidence
put in the dictionary. However, completing the measurements is preferable to make
sure that the located fault does produce the coded response as stored in the ATE. If

Uthe test measurements are all done before attempting to locate the fault, this point will
not be of importance. It is only meaningful if the test measurements are taken sequen-
tially. In some other cases, if the code derived from measurements does not match with
any other code in the dictionary a strange fault will be acknowledged. This is advanta-

*geous compared to other methods which will simply take the nearest fault on a least
squares basis and declare it to be the actual fault.

For multiple test inputs, there are two options in compiling and using the fault
dictionary.

1. It can be regarded as several single input cases. Then a fault dictionary may be
generated for each test input on the basis that all inputs need not necessarily be
applied during the test.

2. If all inputs are to be all applied before fault location is attempted, the dictionaries
have to be combined as has been shown in section 5. This will generally produce
longer fault codes and more storage will be needed. The first approach is recom-
mended.

It is believed that the following points are important to be investigated to improve
* the performance of a logical fault dictionary:

1. A complete hardware implementation of an ATE based on logical isolation of faults.
Several points related to this have been already discussed, e.g. storage requirements,

* interfacing, etc.. For flexibility and possible modifications in the dictionary, a
microprocessor based ATE would naturally be most appropriate.

2. Investigating the effect of the components' statistical variation on the circuit
response and consequently on the dictionary.
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3. The design of test inputs for a better degree of isolation. The piecewise linear
model and the formulation of the circuit equations into a complementary problem
form readily provide the ground for this.

p" .
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